Affiliation:
1. Hydrology and Quantitative Water Management Group, Wageningen University & Research, Wageningen, The Netherlands
2. R&D Observations and Data Technology, Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
3. Department of Water Management, Delft University of Technology, Delft, The Netherlands
Abstract
AbstractApplications like drought monitoring and forecasting can profit from the global and near real-time availability of satellite-based precipitation estimates once their related uncertainties and challenges are identified and treated. To this end, this study evaluates the IMERG V06B Late Run precipitation product from the Global Precipitation Measurement mission (GPM), a multi-satellite product that combines space-based radar, passive microwave (PMW), and infrared (IR) data into gridded precipitation estimates. The evaluation is performed on the spatiotemporal resolution of IMERG (0.1° × 0.1°, 30 min) over the Netherlands over a five-year period. A gauge-adjusted radar precipitation product from the Royal Netherlands Meteorological Institute (KNMI) is used as reference, against which IMERG shows a large positive bias. To find the origin of this systematic overestimation, the data is divided into seasons, rainfall intensity ranges, echo top height (ETH) ranges, and categories based on the relative contributions of IR, morphing, and PMW data to the IMERG estimates. Furthermore, the specific radiometer is identified for each PMW-based estimate. IMERG’s detection performance improves with higher ETH and rainfall intensity, but the associated error and relative bias increase as well. Severe overestimation occurs during low-intensity rainfall events and is especially linked to PMW observations. All individual PMW instruments show the same pattern: overestimation of low-intensity events and underestimation of high-intensity events. IMERG misses a large fraction of shallow rainfall events, which is amplified when IR data is included. Space-based retrieval of shallow and low-intensity precipitation events should improve before IMERG can be implemented over the middle and high-latitudes.
Publisher
American Meteorological Society
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献