Hybrid 4DVAR with a Local Ensemble Tangent Linear Model: Application to the Shallow-Water Model

Author:

Allen Douglas R.1,Bishop Craig H.2,Frolov Sergey3,Hoppel Karl W.1,Kuhl David D.1,Nedoluha Gerald E.1

Affiliation:

1. Remote Sensing Division, Naval Research Laboratory, Washington, D.C.

2. Marine Meteorology Division, Naval Research Laboratory, Monterey, California

3. University Corporation for Atmospheric Research, Monterey, California

Abstract

Abstract An ensemble-based tangent linear model (TLM) is described and tested in data assimilation experiments using a global shallow-water model (SWM). A hybrid variational data assimilation system was developed with a 4D variational (4DVAR) solver that could be run either with a conventional TLM or a local ensemble TLM (LETLM) that propagates analysis corrections using only ensemble statistics. An offline ensemble Kalman filter (EnKF) is used to generate and maintain the ensemble. The LETLM uses data within a local influence volume, similar to the local ensemble transform Kalman filter, to linearly propagate the state variables at the central grid point. After tuning the LETLM with offline 6-h forecasts of analysis corrections, cycling experiments were performed that assimilated randomly located SWM height observations, based on a truth run with forced bottom topography. The performance using the LETLM is similar to that of the conventional TLM, suggesting that a well-constructed LETLM could free 4D variational methods from dependence on conventional TLMs. This is a first demonstration of the LETLM application within a context of a hybrid-4DVAR system applied to a complex two-dimensional fluid dynamics problem. Sensitivity tests are included that examine LETLM dependence on several factors including length of cycling window, size of analysis correction, spread of initial ensemble perturbations, ensemble size, and model error. LETLM errors are shown to increase linearly with correction size in the linear regime, while TLM errors increase quadratically. As nonlinearity (or forecast model error) increases, the two schemes asymptote to the same solution.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3