Internal Hydraulic Transition and Turbulent Mixing Observed in the Kuroshio over the I-Lan Ridge off Northeastern Taiwan

Author:

Chang Ming-Huei12ORCID,Cheng Yu-Hsin3,Yeh Yu-Yu1,Yang Yiing Jang12,Jan Sen1,Liu Chih-Lun4,Matsuno Takeshi5,Endoh Takahiro5,Tsutsumi Eisuke6,Chen Jia-Lin7,Guo Xinyu8

Affiliation:

1. a Institute of Oceanography, National Taiwan University, Taipei, Taiwan

2. b Ocean Center, National Taiwan University, Taipei, Taiwan

3. c Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung, Taiwan

4. d College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

5. e Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan

6. f Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan

7. g Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, Taiwan

8. h Center for Marine Environmental Studies, Ehime University, Ehime, Japan

Abstract

Abstract Complex small-scale processes and energetic turbulence are observed at a sill located on the I-Lan Ridge that spans across the strong Kuroshio off Taiwan. The current speed above the sill is strong (1.5 m s−1) and unsteady (±0.5 m s−1) due to the Kuroshio being modulated by the semidiurnal tide. Above the sill crest, isothermal domes, with vertical scales of ∼20 and ∼50 m during the low and high tides, respectively, are generated by turbulent mixing as a result of shear instability in the bottom boundary layer. Tidally modulated hydraulic character modifies the small-scale processes occurring on the leeward side of the sill. Criticality analysis, performed by solving the Taylor–Goldstein equation, suggests that the observed lee waves and intermediate layer sandwiched by two free shear layers are related to the mode-1 and mode-2 critical control between the sill crest and immediate lee, respectively. Around high tide, lee waves are advected further downstream, and only mode-1 critical control can occur, leading to a warm water depression. The shear instabilities ensuing from the hydraulic transition processes continuously mediate flow kinetic energy to turbulence such that the status of marginal instability where the Richardson number converges at approximately 0.25 is reached. The resultant eddy diffusivity Kρ is concentrated from O(10−4) to O(10−3) m2 s−1 and has a maximum value of 10 m2 s−1. The sill on the western flank of the Kuroshio is a hotspot for energetic mixing of Kuroshio waters and South China Sea waters.

Funder

Ministry of Science and Technology, Taiwan

Central Weather Bureau

Ministry of Education, Culture, Sports, Science and Technology

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3