High-Resolution Large-Eddy Simulations of Scalar Transport in Atmospheric Boundary Layer Flow over Complex Terrain

Author:

Michioka Takenobu1,Chow Fotini Katopodes2

Affiliation:

1. Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Chiba, Japan

2. Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California

Abstract

Abstract This paper presents high-resolution numerical simulations of the atmospheric flow and concentration fields accompanying scalar transport and diffusion from a point source in complex terrain. Scalar dispersion is affected not only by mean flow, but also by turbulent fluxes that affect scalar mixing, meaning that predictions of scalar transport require greater attention to the choice of numerical simulation parameters than is typically needed for mean wind field predictions. Large-eddy simulation is used in a mesoscale setting, providing modeling advantages through the use of robust turbulence models combined with the influence of synoptic flow forcing and heterogeneous land surface forcing. An Eulerian model for scalar transport and diffusion is implemented in the Advanced Regional Prediction System mesoscale code to compare scalar concentrations with data collected during field experiments conducted at Mount Tsukuba, Japan, in 1989. The simulations use horizontal grid resolution as fine as 25 m with up to eight grid nesting levels to incorporate time-dependent meteorological forcing. The results show that simulated ground concentration values contain significant errors relative to measured values because the mesoscale wind typically contains a wind direction bias of a few dozen degrees. Comparisons of simulation results with observations of arc maximum concentrations, however, lie within acceptable error bounds. In addition, this paper investigates the effects on scalar dispersion of computational mixing and lateral boundary conditions, which have received little attention in the literature—in particular, for high-resolution applications. The choice of lateral boundary condition update interval is found not to affect time-averaged quantities but to affect the scalar transport strongly. More frequent updates improve the simulated ground concentration values. In addition, results show that the computational mixing coefficient must be set to as small a value as possible to improve scalar dispersion predictions. The predicted concentration fields are compared as the horizontal grid resolution is increased from 190 m to as fine as 25 m. The difference observed in the results at these levels of grid refinement is found to be small relative to the effects of computational mixing and lateral boundary updates.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3