Real-Time Water Vapor Maps from a GPS Surface Network: Construction, Validation, and Applications

Author:

de Haan Siebren1,Holleman Iwan1,Holtslag Albert A. M.2

Affiliation:

1. Royal Netherlands Meteorological Institute, De Bilt, Netherlands

2. Wageningen University, Wageningen, Netherlands

Abstract

Abstract In this paper the construction of real-time integrated water vapor (IWV) maps from a surface network of global positioning system (GPS) receivers is presented. The IWV maps are constructed using a two-dimensional variational technique with a persistence background that is 15 min old. The background error covariances are determined using a novel two-step method, which is based on the Hollingsworth–Lonnberg method. The quality of these maps is assessed by comparison with radiosonde observations and IWV maps from a numerical weather prediction (NWP) model. The analyzed GPS IWV maps have no bias against radiosonde observations and a small bias against NWP analysis and forecasts up to 9 h. The standard deviation with radiosonde observations is around 2 kg m−2, and the standard deviation with NWP increases with increasing forecast length (from 2 kg m−2 for the NWP analysis to 4 kg m−2 for a forecast length of 48 h). To illustrate the additional value of these real-time products for nowcasting, three thunderstorm cases are discussed. The constructed GPS IWV maps are combined with data from the weather radar, a lightning detection network, and surface wind observations. All cases show that the location of developing thunderstorms can be identified 2 h prior to initiation in the convergence of moist air.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference37 articles.

1. Integrated atmospheric water vapor estimates from a regional GPS network.;Baltink;J. Geophys. Res.,2002

2. The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives.;Banacos;Wea. Forecasting,2005

3. Upgrade and evaluation of a lightning detection system.;Beekhuis,2004

4. GPS meteorology: Mapping zenith wet delays onto precipitable water.;Bevis;J. Appl. Meteor.,1994

5. A simple instability index for use as a synoptic parameter.;Boyden;Meteor. Mag.,1963

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3