Environmental Influences on the Strength of Tropical Storm Debby (2006)

Author:

Sippel Jason A.1,Braun Scott A.1,Shie Chung-Lin1

Affiliation:

1. Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

Abstract This study uses mesoscale ensemble forecasts to compare the magnitude of nonaerosol effects of the Saharan air layer (SAL) with other environmental influences on the intensity of Tropical Storm Debby. Debby was a weak Cape Verde storm that dissipated over the tropical North Atlantic a few days after forming in August 2006. The system has received considerable attention because of its vicinity to the SAL as it struggled to intensify, which has led to speculation that the SAL helped lead to the storm’s demise. Statistical correlation is used to better understand why some ensemble members strengthen the pre-Debby wave into a hurricane and others develop only a weak vortex. Although the results here suggest that the SAL slowed intensification during the predepression to depression stages, it was not likely responsible for Debby’s dissipation. The most obvious SAL-related factor to affect long-term intensity in the ensembles is dry air above 2 km, which delays organization of the low-level vortex. Warm temperatures within the SAL and shear associated with the African easterly jet (AEJ) exhibit a weak, secondary relationship with forecast intensity variability. An important result here is that sensitivity to the dry environmental air depends considerably on cyclone strength, and it becomes insignificant once a tropical storm forms. Furthermore, Debby’s most rapid period of intensification coincided with its track over somewhat higher sea surface temperatures, and intensification ended when the storm moved over cooler waters. The results herein suggest that this factor might have affected the storm’s intensity more strongly than did any effect of the SAL. Even later, subsequent to the period examined by these ensembles, Debby dissipated under the influence of stronger vertical wind shear from an upper-level trough. These results show that the relationship among the SAL, AEJ, and developing tropical cyclones is not as straightforward as has been hypothesized by some recent studies. Ultimately, the nuanced relationship between storm intensity and the SAL shows that much care needs to be taken before drawing conclusions about the effect of the SAL on any particular cyclone. The authors therefore advocate more rigorous future analysis through both idealized and ensemble studies to more fully quantify the effect of the SAL on tropical cyclones in general.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3