Wavelet-Based Methodology for the Verification of Stochastic Submeso and Meso-Gamma Fluctuations

Author:

Suarez Astrid1,Stauffer David R.1,Gaudet Brian J.1

Affiliation:

1. Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Abstract

Abstract Numerical weather prediction model skill is difficult to assess for transient, nonstationary, nondeterministic, or stochastic motions, like submeso and small meso-gamma motions. New approaches are needed to complement traditional methods and to quantify and evaluate the variability and the errors for these high-frequency, nondeterministic modes. A new verification technique that uses the wavelet transform as a bandpass filter to obtain scale-dependent frequency distributions of fluctuations is proposed for assessing model performance or accuracy. This new approach quantifies the nondeterministic variability independent of time while accounting for the time scale and amplitude of each fluctuation. The efficacy of this wavelet decomposition technique for the verification of submeso and meso-gamma motions is first illustrated for a single case before the analysis is extended to six cases. The sensitivity of subkilometer grid-length Weather Research and Forecasting Model forecasts to the choice of three initialization strategies is assessed for both deterministic and stochastic motions using observations from a special network located at Rock Springs, Pennsylvania. It is demonstrated that the use of data assimilation in a preforecast period results in improved temperature and wind speed statistics for deterministic motions and for nondeterministic fluctuations with periods greater than ~20 min. As expected, there is little-to-no accuracy forecasting the occurrence of variability for temperature and wind in the smaller-submeso range and greater accuracy in the larger-submeso and meso-gamma ranges. Nonetheless, the model has some difficulty reproducing the observed variability with the correct amplitude. It underestimates the amplitude of observed fluctuations even for larger time scales, where better model performance could be expected.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3