Impact of Removing Covariance Localization in an Ensemble Kalman Filter: Experiments with 10 240 Members Using an Intermediate AGCM

Author:

Kondo Keiichi1,Miyoshi Takemasa2

Affiliation:

1. RIKEN Advanced Institute for Computational Science, Kobe, Japan

2. RIKEN Advanced Institute for Computational Science, Kobe, Japan, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Abstract

Abstract The ensemble Kalman filter (EnKF) with high-dimensional geophysical systems usually employs up to 100 ensemble members and requires covariance localization to reduce the sampling error in the forecast error covariance between distant locations. The authors’ previous work pioneered implementation of an EnKF with a large ensemble of up to 10 240 members, but this method required application of a relatively broad covariance localization to avoid memory overflow. This study modified the EnKF code to save memory and enabled for the first time the removal of completely covariance localization with an intermediate AGCM. Using the large sample size, this study aims to investigate the analysis and forecast accuracy, as well as the impact of covariance localization when the sampling error is small. A series of 60-day data assimilation cycle experiments with different localization scales are performed under the perfect model scenario to investigate the pure impact of covariance localization. The results show that the analysis and 7-day forecasts are much improved by removing covariance localization and that the long-range covariance between distant locations plays a key role. The eigenvectors of the background error covariance matrix based on the 10 240 ensemble members are explicitly computed and reveal long-range structures.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3