Toward a PV-Based Algorithm for the Dynamical Core of Hydrostatic Global Models

Author:

Mohebalhojeh Ali R.1,Joghataei Mohammad2,Dritschel David G.3

Affiliation:

1. Institute of Geophysics, University of Tehran, Tehran, Iran

2. Institute of Geophysics, University of Tehran, Tehran, and Department of Physics, Yazd University, Yazd, Iran

3. School of Mathematics and Statistics, University of St. Andrews, St. Andrews, United Kingdom

Abstract

Abstract The diabatic contour-advective semi-Lagrangian (DCASL) algorithms previously constructed for the shallow-water and multilayer Boussinesq primitive equations are extended to multilayer non-Boussinesq equations on the sphere using a hybrid terrain-following–isentropic (σ–θ) vertical coordinate. It is shown that the DCASL algorithms face challenges beyond more conventional algorithms in that various types of damping, filtering, and regularization are required for computational stability, and the nonlinearity of the hydrostatic equation in the σ–θ coordinate causes convergence problems with setting up a semi-implicit time-stepping scheme to reduce computational cost. The prognostic variables are an approximation to the Rossby–Ertel potential vorticity Q, a scaled pressure thickness, the horizontal divergence, and the surface potential temperature. Results from the DCASL algorithm in two formulations of the σ–θ coordinate, differing only in the rate at which the vertical coordinate tends to θ with increasing height, are assessed using the baroclinic instability test case introduced by Jablonowski and Williamson in 2006. The assessment is based on comparisons with available reference solutions as well as results from two other algorithms derived from the DCASL algorithm: one with a semi-Lagrangian solution for Q and another with an Eulerian grid-based solution procedure with relative vorticity replacing Q as the prognostic variable. It is shown that at intermediate resolutions, results comparable to the reference solutions can be obtained.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3