Two Types of Strong Local Wind Captured by Simultaneous Multiple-Site Radiosonde Soundings across a Mountain Range

Author:

Komatsu Kensuke K.1,Tachibana Yoshihiro1

Affiliation:

1. Weather and Climate Dynamics Division, Mie University, Tsu, Japan

Abstract

A radiosonde observation method is presented, consisting of simultaneous radiosonde observations at closely spaced multiple sites using balloons with varied buoyancies. This method was employed during a strong wind event (Suzuka-oroshi) on the lee side of the Suzuka mountain range, Japan, to derive the detailed structure of the wind as it crossed the mountains. Batches of six radiosondes were launched simultaneously from a line of four sites, using balloons with three different degrees of buoyancy. The four sites were 13 km apart along a 35-km-long transect roughly aligned with the prevailing wind. The observations documented two flow regimes: a downslope flow perpendicular to the mountain range, similar to a windstorm, and an unexpectedly strong low-level jet flowing parallel to the mountain range. The method was more successful at delineating the first regime than the second. The first regime was well simulated by a numerical experiment, but the second regime was not. The vertical wind associated with the downslope windstorm was inferred from the changing slopes of potential temperature isentropes. Comparison of the balloon ascent rates with these isentropes meanders and the simulated vertical wind showed that fluctuations in balloon ascent rate provide reliable information on the vertical direction of the wind. An analysis of the second regime using a long-term meteorological dataset shows that the onset of the low-level jet is related to the synoptic-scale shift in vorticity from positive to negative in the observation area. This vorticity shift appears to be a useful indicator for the low-level jet regime.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3