A Semi-Implicit Modification to the Lorenz N-Cycle Scheme and Its Application for Integration of Meteorological Equations

Author:

Hotta Daisuke1,Kalnay Eugenia2,Ullrich Paul3

Affiliation:

1. Japan Meteorological Agency, Tokyo, Japan, and University of Maryland, College Park, College Park, Maryland

2. University of Maryland, College Park, College Park, Maryland

3. Department of Land, Air and Water Resources, University of California, Davis, Davis, California

Abstract

Abstract The Lorenz N-cycle is an economical time integration scheme that requires only one function evaluation per time step and a minimal memory footprint, but yet possesses a high order of accuracy. Despite these advantages, it has remained less commonly used in meteorological applications, partly because of its lack of semi-implicit formulation. In this paper, a novel semi-implicit modification to the Lorenz N-cycle is proposed. The advantage of the proposed new scheme is that it preserves the economical memory use of the original explicit scheme. Unlike the traditional Robert–Asselin (RA) filtered semi-implicit leapfrog scheme whose formal accuracy is only of first order, the new scheme has second-order accuracy if it adopts the Crank–Nicolson scheme for the implicit part. A linear stability analysis based on a univariate split-frequency oscillation equation suggests that the 4-cycle is more stable than other choices of N. Numerical experiments performed using the dynamical core of the Simplified Parameterizations Primitive Equation Dynamics (SPEEDY) atmospheric general circulation model under the framework of the Jablonowski–Williamson baroclinic wave test case confirms that the new scheme in fact has second-order accuracy and is more accurate than the traditional RA-filtered leapfrog scheme. The experiments also give evidence for Lorenz’s claim that the explicit 4-cycle scheme can be improved by running its two “isomeric” versions in alternating sequences. Unlike the explicit scheme, however, the proposed semi-implicit scheme is not improved by alternation of the two versions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3