Photogrammetric Analysis of the 2013 El Reno Tornado Combined with Mobile X-Band Polarimetric Radar Data

Author:

Wakimoto Roger M.1,Atkins Nolan T.2,Butler Kelly M.2,Bluestein Howard B.3,Thiem Kyle3,Snyder Jeffrey3,Houser Jana3

Affiliation:

1. Department of Atmospheric and Oceanic Science, University of Colorado, Boulder, Colorado

2. Department of Atmospheric Sciences, Lyndon State College, Lyndonville, Vermont

3. School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract This study presents rapid-scanning X-band polarimetric radar data combined with photogrammetry of the El Reno tornado of 31 May 2013. The relationship between the hook echo, weak-echo hole (WEH), weak-echo column (WEC), and the rotational couplet with the visual characteristics of the tornado are shown. For the first time, cross-correlation coefficient (ρhv) and differential reflectivity (ZDR) data are included in the photogrammetric analyses. The tornado was accompanied by a large tornadic debris signature (TDS) with a diameter ~2 km wide during the analysis time. The center of the TDS was not collocated with the WEH and the rotational couplet. Instead, the TDS was displaced ~1 km to the north and within the weak-echo notch of the hook echo. A “debris overhang” was identified in vertical cross sections of the ρhv fields. The overhang was located in a weak-echo trench and a notch of high ρhv, consistent with the position of the tornado updraft. The updraft was hypothesized to be carrying small debris particles to heights that produced the overhang signature. A U-shaped band of high ρhv and ZDR was resolved in a vertical cross section and positioned at the periphery of the WEC during one of the analysis times. It was proposed that the band formed as a result of hydrometeors encircling the WEC while being surrounded on all sides by relatively hydrometeor-free air. The characteristics of the scatterers within the WEC were resolved and believed to be composed of a low concentration of very small, randomly oriented, debris particles, even in the presence of strong centrifuging, and a general absence of hydrometeors.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3