Aerial Damage Survey of the 2013 El Reno Tornado Combined with Mobile Radar Data

Author:

Wakimoto Roger M.1,Atkins Nolan T.2,Butler Kelly M.23,Bluestein Howard B.4,Thiem Kyle4,Snyder Jeffrey C.5,Houser Jana3,Kosiba Karen6,Wurman Joshua6

Affiliation:

1. * Department of Atmospheric and Oceanic Science, University of Colorado Boulder, Boulder, Colorado

2. Department of Atmospheric Sciences, Lyndon State College, Lyndonville, Vermont

3. Department of Geography, Ohio University, Athens, Ohio

4. School of Meteorology, University of Oklahoma, Norman, Oklahoma

5. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

6. ** Center for Severe Weather Research, Boulder, Colorado

Abstract

A detailed damage survey of the El Reno, Oklahoma, tornado of 31 May 2013 combined with rapid-scanning data recorded from two mobile radars is presented. One of the radars was equipped with polarimetric capability. The relationship between several suction vortices visually identified in pictures with the high-resolution Doppler velocity data and swath marks in fields is discussed. The suction vortices were associated with small shear features in Doppler velocity and a partial ringlike feature of high spectral width. For the first time, a suction vortex that created a swath mark in a field was visually identified in photographs and high-definition video while the rotational couplet was tracked by radar. A dual-Doppler wind synthesis of the tornadic circulation at low levels near the location of several storm chaser fatalities resolved ground-relative wind speeds in excess of 90 m s−1, greater than the minimum speed for EF5 damage. The vertical vorticity analysis revealed a rapid transition from a single tornadic vortex centered on the weak-echo hole (WEH) to suction vortices surrounding the WEH and collocated with the ring of enhanced radar reflectivities. Several bands/zones of enhanced convergence were resolved in the wind syntheses. One of the bands was associated with an internal or secondary rear-flank gust front. An inner band of convergence appeared to be a result of the positive bias in tornado-relative radial velocity owing to centrifuging of large lofted debris swirling within the tornado. An outer band of convergence formed at the northern edge of a region of strong inflow that was lofting small debris and dust into the storm.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3