The Role of Moisture Pathways on Snowfall Amount and Distribution in the Payette Mountains of Idaho

Author:

Cann Matthew D.1,Friedrich K.1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Abstract

AbstractThe pathways air travels from the Pacific Ocean to the Intermountain West of the United States are important for understanding how air characteristics change and how this translates to the amount and distribution of snowfall. Recent studies have identified the most common moisture pathways in the Intermountain West, especially for heavy precipitation events. However, the role of moisture pathways on snowfall amount and distribution in specific regions remains unclear. Here, we investigate 24 precipitation events in the Payette Mountains of Idaho during January–March 2017 to understand how local atmospheric conditions are tied to three moisture pathways and how it impacts snowfall amount and distribution. During one pathway, southwesterly, moist, tropical air is directed into the Central Valley of California where the air is blocked by the Sierra Nevada, redirected northward and over lower terrain north of Lake Tahoe into the Snake River Plain of Idaho. Other pathways consist of unblocked flows that approach the coast of California from the southwest and then override the northern Sierra Nevada and southern Cascades, and zonal flows approaching the coast of Oregon overriding the Oregon Cascades. Air masses in the Payette Mountains of Idaho associated with Sierra-blocked flow were observed to be warmer, moister, and windier compared to the other moisture pathways. During Sierra-blocked flow, higher snowfall rates, in terms of mean reflectivity, were observed more uniformly distributed throughout the region compared to the other flows, which observed lower snowfall rates that were predominantly collocated with areas of higher terrain. Of the total estimated snowfall captured in this study, 67% was observed during Sierra-blocked flow.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3