Toward a Quantitative Understanding of Robert’s Rising Thermal Bubble as a Benchmark for 3D Atmospheric Codes

Author:

Andrés-Carcasona M.1ORCID,Soria M.2ORCID,García-Melendo E.2ORCID,Miró A.23ORCID

Affiliation:

1. a Institut de Física d’Altes Energies, Barcelona Institute of Science and Technology, Barcelona, Spain

2. b UPC, Escola Superior d’Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa, Terrassa, Spain

3. c Barcelona Supercomputing Center, Barcelona, Spain

Abstract

Abstract Robert’s rising thermal bubble (RRTB) is a benchmark case used to assess atmospheric models. In this paper, RRTB is further studied both using an analytical and a numerical approach, improving to a greater extent the qualitative description found in the literature. The theoretical framework used is that of buoyant thermals and scaling theory that together are able to predict part of the expected behavior of the bubble as it rises and, therefore, can be used to further validate the simulations. For the numerical experiments, we simulate both a two-dimensional and three-dimensional RRTB using a variety of convection schemes under the Boussinesq approximation and with a higher resolution. While the results are in agreement with those presented by previous authors on the same benchmark and also with the theoretical framework established, we add the quantitative measures to validate the underlying physics of the numerical model. Our results also show that, due to its completely chaotic nature when confined in a 2D plane, RRTB becomes a very challenging candidate to be used as a benchmark if only compared in a qualitative way, and when the 3D bubble is simulated, the shape changes significantly.

Funder

Red Española de Supercomputación

Agència de Gestió d'Ajuts Universitaris i de Recerca

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference51 articles.

1. Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, J. Chang, Ed., Vol. 17, Academic Press, 173–265.

2. A control-volume model of the compressible Euler equations with a vertical Lagrangian coordinate;Chen, X.,2013

3. The explicit planetary isentropic-coordinate (EPIC) atmospheric model;Dowling, T. E.,1998

4. Generalizing the Boussinesq approximation to stratified compressible flow;Durran, D. R.,2007

5. Reducing numerical diffusion in interfacial gravity wave simulations;Fringer, O. B.,2005

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3