Rain Impacts on the Surface Atmosphere and Upper Ocean in the Central Equatorial Pacific

Author:

Whitt Daniel B.1

Affiliation:

1. a NASA Ames Research Center, Moffett Field, California

Abstract

Abstract The impacts of rainy days (>24 mm) on the physics of the surface atmosphere and upper ocean are characterized in the central Pacific Ocean (140°–170°W) on the equator, where deep-cycle turbulence substantially influences the sea surface temperature and air–sea heat flux on diurnal and longer time scales. Here, rainfall is relatively weak on average (1–3 mm day−1), and enough rain to substantially alter the diurnal cycle of upper-ocean buoyancy only occurs on the order of once in 100 days, albeit more frequently to the west and during El Niño and boreal winter. Rainy days are associated with multiple systematic changes in the surface atmosphere, but the freshwater and the reduction in daily downwelling shortwave radiation (by ∼50 W m−2) are codominant and drive systematic changes in the ocean during and the day after the rainy day. These two drivers explain ensemble average reductions in the upper-ocean salinity (−0.12 psu at 1 m) and temperature (−0.16°C at 1 m) and increases in buoyancy (+0.0005 m s−2 at 1 m), which are typically confined to a shallow fresh/warm mixing layer on the order of 10 m thick in the daytime. At deeper depths, the intrinsic ocean temperature, salinity, and velocity variability make it challenging to extract an ensemble average response to rainy days in observations, but some examples from observations and large-eddy simulations suggest that rainfall can significantly reduce the vertical extent and heat flux in the deep-cycle turbulence, although the bulk energetics and buoyancy flux of the turbulence are not necessarily modified by rain. Significance Statement Rain significantly impacts social and ecological systems in many ways that are readily apparent in populated areas, but the impacts of rain over the ocean are not as well known. In this paper, sustained in situ observations over decades and highly resolved numerical simulations of ocean turbulence during a few rain events are used to characterize the impacts of rainy days on the surface–atmosphere and upper-ocean physics in the center of action of El Niño in the central equatorial Pacific. These results contribute to broader efforts to observe, understand, and accurately model the surface atmosphere, the upper ocean, and air–sea interaction in the central Pacific and thereby improve long-range weather and climate observations and predictions.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3