Towards the Upper-Ocean Unbalanced Submesoscale Motions in the Oleander Observations

Author:

Cao Haijin12ORCID,Fox-Kemper Baylor3,Jing Zhiyou4,Song Xiangzhou12,Liu Yuyi4

Affiliation:

1. a Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, China

2. b College of Oceanography, Hohai University, Nanjing, China

3. c Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island

4. d State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Abstract

Abstract Oceanic submesoscale dynamics with horizontal scales < 20 km have similar temporal and spatial scales as internal gravity waves (IGWs), but they differ dynamically and have distinct impacts on the ocean. Separating unbalanced submesoscale motions (USMs), quasi-balanced submesoscale motions (QBMs), and IGWs in observations remains a great challenge. Based on the wave–vortex decomposition and the vertical scale separation approach for distinguishing IGWs and USMs, the long-term repeat Oleander observations in the Gulf Stream region provide an opportunity to quantify these processes separately. Here in this study, the role of USMs in the divergence is emphasized, which has confounded the wave–vortex decomposition of wintertime data in previous analyses. We also adopt the vertical filtering approach to identify the USMs by applying a high-pass filter to the vertical scales, as USMs are characterized by smaller vertical scales. This approach is tested with submesoscale-permitting model data to confirm its effectiveness in filtering the submesoscale velocity perturbations, before being applied to the compiled velocity data of the Oleander dataset (years 2005–18). The results show that the averaged submesoscale eddy kinetic energy by USMs can reach ∼1 × 10−3 m2 s−2 at z = −30 m in winter, much stronger than found in other seasons. Importantly, this study exemplifies the possibility of obtaining USMs from existing ADCP observations and reveals the seasonal dynamical regimes for the submesoscales.

Funder

National Natural Science Foundation of China

Office of Naval Research Global

Publisher

American Meteorological Society

Subject

Oceanography

Reference60 articles.

1. Improved global maps and 54-year history of wind-work on ocean inertial motions;Alford, M. H.,2003

2. Near-inertial internal gravity waves in the ocean;Alford, M. H.,2016

3. Vertical fluxes conditioned on vorticity and strain reveal submesoscale ventilation;Balwada, D.,2021

4. Modifying the mixed layer eddy parameterization to include frontogenesis arrest by boundary layer turbulence;Bodner, A. S.,2023

5. Wave-vortex decomposition of one-dimensional ship-track data;Bühler, O.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3