A Possible Hysteresis in the Arctic Ocean due to Release of Subsurface Heat during Sea Ice Retreat

Author:

Beer Emma1,Eisenman Ian1,Wagner Till J. W.2,Fine Elizabeth C.13

Affiliation:

1. a Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

2. b University of Wisconsin–Madison, Madison, Wisconsin

3. c Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Abstract

Abstract The Arctic Ocean is characterized by an ice-covered layer of cold and relatively fresh water above layers of warmer and saltier water. It is estimated that enough heat is stored in these deeper layers to melt all the Arctic sea ice many times over, but they are isolated from the surface by a stable halocline. Current vertical mixing rates across the Arctic Ocean halocline are small, due in part to sea ice reducing wind–ocean momentum transfer and damping internal waves. However, recent observational studies have argued that sea ice retreat results in enhanced mixing. This could create a positive feedback whereby increased vertical mixing due to sea ice retreat causes the previously isolated subsurface heat to melt more sea ice. Here, we use an idealized climate model to investigate the impacts of such a feedback. We find that an abrupt “tipping point” can occur under global warming, with an associated hysteresis window bounded by saddle-node bifurcations. We show that the presence and magnitude of the hysteresis are sensitive to the choice of model parameters, and the hysteresis occurs for only a limited range of parameters. During the critical transition at the bifurcation point, we find that only a small percentage of the heat stored in the deep layer is released, although this is still enough to lead to substantial sea ice melt. Furthermore, no clear relationship is apparent between this change in heat storage and the level of hysteresis when the parameters are varied.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Oceanography

Reference40 articles.

1. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms;Ardyna, M.,2014

2. The reversibility of sea ice loss in a state-of-the-art climate model;Armour, K. C.,2011

3. Meridional atmospheric heat transport constrained by energetics and mediated by large-scale diffusion;Armour, K. C.,2019

4. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat;Arthun, M.,2012

5. Polar amplification due to enhanced heat flux across the halocline;Beer, E.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3