Modulation of the Oceanic Mesoscale Activity by the Mesoscale Thermal Feedback to the Atmosphere

Author:

Renault Lionel1,Masson S.2,Oerder V.345,Colas F.2,McWilliams J. C.6

Affiliation:

1. a LEGOS, Université de Toulouse, CNES-CNRS-IRD-UPS, Toulouse, France

2. b Sorbonne Universites (UPMC, Univ Paris 06)-CNRS-IRD-MNHN, LOCEAN, Paris, France

3. c Escuela de Ciencias del Mar y Instituto Milenio de Oceanografia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile

4. d Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile

5. e Instituto Milenio de Oceanografia, Universidad de Concepción, Concepción, Chile

6. f Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Abstract

Abstract Ocean mesoscale thermal feedback (TFB) is the influence of mesoscale sea surface temperature (SST) anomalies on the overlying atmosphere and its feedback to the ocean. Over the past few decades, TFB has been shown to affect the atmosphere by inducing low-level wind and surface stress anomalies and modulating ocean–atmosphere heat fluxes ubiquitously over the global oceans. These anomalies can alter the climate variability. However, it is not clear yet to what extent heat and momentum flux anomalies modulate the mesoscale ocean activity. Here, using coupled ocean–atmosphere mesoscale simulations over a realistic subtropical channel centered on the equator in which the TFB can be turned off by spatially smoothing the SST as seen by the atmosphere, we show that TFB can damp the mesoscale activity, with a more pronounced effect near the surface. This damping appears to be sensitive to the cutoff filter used: on average, the surface mesoscale activity is attenuated by 9% when smoothing the SST using an ∼1000-km cutoff but by only 2% when using an ∼350-km cutoff. We demonstrate that the mesoscale activity damping is primarily caused by a sink of available eddy potential energy that is controlled by the induced-anomalous heat fluxes, the surface stress anomalies having a negligible role. When TFB is neglected, the absence of sink of potential energy is partly compensated by a more negative eddy wind work. We illustrate that TFB filtering in a coupled model must be done carefully because it can also impact the large-scale meridional SST gradients and subsequently the mean large-scale wind stress curl and ocean dynamics.

Funder

CNES

LEFE CNRS

Publisher

American Meteorological Society

Subject

Oceanography

Reference79 articles.

1. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets;Betts, A.,1986

2. The global sink of available potential energy by mesoscale air-sea interaction;Bishop, S. P.,2020

3. Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics;Blanke, B.,1993

4. The bulk parameterizations of turbulent air–sea fluxes in NEMO4: The origin of sea surface temperature differences in a global model study;Bonino, G.,2022

5. An ERA40-based atmospheric forcing for global ocean circulation models;Brodeau, L.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3