Extending Residual-Mean Overturning Theory to the Topographically Localized Transport in the Southern Ocean

Author:

Youngs Madeleine K.1ORCID,Flierl Glenn R.2

Affiliation:

1. a Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

2. b Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

Abstract The Southern Ocean plays a major role in global air–sea carbon fluxes, with some estimates suggesting it contributes to up to 40% of the oceanic anthropogenic carbon dioxide uptake, despite only comprising about 20% of oceanic surface area. Thus, the Southern Ocean overturning, the circulation that transports tracers between the surface and deep ocean interior, is particularly important for climate. Recent studies show that vertical velocities and tracer transport are largest just downstream of bottom topography; these quantities are related to the overturning, but provide incomplete information about the net Lagrangian transport, usually described with the residual-mean theory in a zonally integrated sense. This study uses an idealized Southern Ocean–like channel model with particle tracking to visualize the thickness-weighted velocities that capture the net overturning transport of a parcel, connecting residual-mean overturning theory to the three-dimensional, localized nature of the overturning. From this, we split the flow into three main drivers of transport: a wind-driven Ekman pumping into or out of a density layer, and standing eddies and transient eddies, both of which are localized near the topography. In this framework, the three-dimensional overturning circulation is not a small residual between the eddy and Eulerian-mean transport. The existence of a ridge weakens the response of the overturning to changes in wind, especially in the lower cell. This local understanding of the overturning framework suggests that careful modeling and sampling of specific regions near topography in the Southern Ocean are vital to understand climate sensitivity, transport, carbon export, and connections with the oceans to the north.

Funder

National Defense Science and Engineering Graduate

NOAA Climate and Global Change Postdoctoral Fellowship

Schmidt Family Foundation

Division of Ocean Sciences

Publisher

American Meteorological Society

Subject

Oceanography

Reference41 articles.

1. Topographic enhancement of eddy efficiency in baroclinic equilibration;Abernathey, R.,2014

2. The dependence of Southern Ocean meridional overturning on wind stress;Abernathey, R.,2011

3. Baroclinic control of Southern Ocean eddy upwelling near topography;Barthel, A.,2022

4. Southern Ocean overturning compensation in an eddy-resolving climate simulation;Bishop, S. P.,2016

5. Standing and transient eddies in the response of the Southern Ocean meridional overturning to the southern annular mode;Dufour, C. O.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3