The Brazil Basin Tracer Release Experiment: Observations

Author:

Ledwell James R.1

Affiliation:

1. a Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Abstract

Abstract Lightening of bottom water is required to close the abyssal overturning circulation, believed to play an important role in the climate system. A tracer release experiment and turbulence measurement programs have revealed how bottom water is lightened, and illuminated the associated circulation in the deep Brazil Basin, a representative region of the global ocean. Tracer was released on an isopycnal surface about 4000 m deep, over one of the fracture zones emanating from the Mid-Atlantic Ridge (MAR). Tracer that mixed toward the bottom moved toward the MAR across isopycnal surfaces that bend down to intersect the bottom at a rate implying a near-bottom buoyancy flux of 1.5 × 10−9 m2 s−3, somewhat larger than inferred from dissipation measurements. The diffusivity at the level of the tracer release is estimated at 4.4 ± 1 × 10−4 m2 s−1, again larger than inferred from dissipation rates. The main patch moved southwest at about 2 cm s−1 while sinking due to the divergence of buoyancy flux above the bottom layer. The isopycnal eddy diffusivity was about 100 m2 s−1. Westward flow away from the MAR is the return flow balancing the eastward near-bottom upslope flow. The southward component of the flow is roughly consistent with conservation of potential vorticity. The circulation as well as the pattern of diapycnal flux are qualitatively the same as in St. Laurent et al. (2001) but are more robust. The results indicate that diapycnal diffusivity is about twice that invoked by Morris et al. (2001) in calculating the basinwide buoyancy budget. Significance Statement Buoyancy flux into the abyssal waters is required to close the overturning circulation of those waters, an important part of the climate system. This contribution presents a robust view of the strength of that buoyancy flux and the associated circulation.

Funder

Directorate for Geosciences

Publisher

American Meteorological Society

Reference42 articles.

1. A technique for objective analysis and design of oceanographic experiments applied to MODE-73;Bretherton, F. P.,1976

2. Restratification of abyssal mixing layers by submesoscale baroclinic eddies;Callies, J.,2018

3. Turbulent mixing in a deep fracture zone on the mid-Atlantic ridge;Clément, L.,2017

4. Diapycnal mixing in the ocean: The Osborn-Cox model;Davis, R. E.,1994

5. Sampling turbulent dissipation;Davis, R. E.,1996

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3