Turbulence Generated through Critical Reflection of Internal Waves off the Seafloor due to Nontraditional Effects

Author:

Delorme Bertrand L.1ORCID,Thomas Leif N.1

Affiliation:

1. a Earth System Science Department, Stanford University, Stanford, California

Abstract

Abstract Recent work has shown that, when nontraditional (NT) effects associated with the horizontal component of the Coriolis parameter are taken into account, equatorial waves (EWs) experience critical reflection when they reflect off the seafloor at the latitude where their frequency is equal to the inertial frequency. As a result, the vertical shear associated with the wave is strongly enhanced locally and results in bottom-intensified mixing. Using an off-the-shelf parameterization for mixing, these studies have shown that this process could play an important role in driving diapycnal upwelling in the abyssal ocean, but the specific mechanisms generating the mixing have not been studied yet. In this work, we address this limitation by running two-dimensional, high-resolution, nonhydrostatic simulations of the critical reflection of internal waves modified by NT effects. These simulations can resolve the instabilities triggered when the wave reflects off the bottom, allowing us to characterize the energy cascade to smaller scales and to estimate the mixing it generates. We find that shear instabilities drive elevated turbulent diffusivities between 10−1 and −10−3 m2 s−1 over a critical layer of 100–300 m thick. The shear instabilities result directly from the enhancement of kinetic energy in the reflected wave that is confined against the seafloor during the critical reflection process. Simultaneously, higher harmonics are generated and flux energy upward in the water column. These higher harmonics are unstable to parametric subharmonic instability, which absorbs their energy and drive enhanced dissipation above the critical layer, to a height of O(1000) m off the bottom. We show how these results depend on key elements of the EWs and of the medium and discuss the implementation of a parameterization of these effects in global ocean models.

Funder

Office of Naval Research

Publisher

American Meteorological Society

Subject

Oceanography

Reference45 articles.

1. Adcroft, A., and Coauthors, 2016: MITgcm User Manual. MIT Tech. Doc., 485 pp.

2. Near-inertial internal gravity waves in the ocean;Alford, M. H.,2016

3. Deep equatorial ocean circulation induced by a forced dissipated Yanai beam;Ascani, F.,2010

4. Effects of the horizontal component of the Earth’s rotation on wave propagation on an f-plane;Beckmann, A.,1994

5. Getting to the bottom of the ocean;de Lavergne, C.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3