Identification of Thermohaline Sheet and Its Spatial Structure in the Canada Basin

Author:

Lu Yuan-Zheng123,Guo Shuang-Xi1234,Zhou Sheng-Qi1234,Song Xue-Long5,Huang Peng-Qi14

Affiliation:

1. a State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

2. b Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China

3. c Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China

4. d University of Chinese Academy of Sciences, Beijing, China

5. e Guilin University of Electronic Technology, Beihai, China

Abstract

Abstract Thirty-four individual thermohaline sheets are identified at depths of 170–400 m in the Canada Basin of the Arctic Ocean by using the hydrographical data measured with the Ice-Tethered Profilers (ITPs) between August 2005 and October 2009. Each sheet is well determined because the salinity within itself remains very stable and the associated salinity anomaly is markedly smaller than the salinity jump between neighboring sheets. These thermohaline sheets are nested between the Lower Halocline Water (LHW) and Atlantic Water (AW) with lateral coherence of hundreds of kilometers and thickness varying from several to dozens of meters. The physical properties, including temperature, heat flux, and vertical turbulent diffusivity, in the sheet are found to be averagely associated with the AW propagation. Spatially, the thermohaline sheet is in a bowl-shaped distribution, which is deepest in the basin center and gradually becomes shallower toward the periphery. The interaction between the LHW and AW could be demonstrated through the property variances in the sheets. The temperature variances in the upper and lower sheets are correlated with the LHW and AW, respectively, transited at the 15th sheet, whereas the depth variance in the sheet is strongly correlated with the LHW. It is proposed that the sheet spatial distribution is mainly dominated by the Ekman convergence with the Beaufort Gyre, slightly modulated with the AW intrusion. Significance Statement The diffusive convection staircases, composed of consecutive steps containing thick mixed layers and relatively thin interfaces, are prominent between the Lower Halocline Water (LHW) and the Atlantic Water (AW) throughout the Canada Basin. This sheet-like structure is in a bowl shape with lateral coherence over hundreds of kilometers. It is proposed that the distribution of the thermohaline sheet is mainly dominated by the Ekman convergence with Beaufort Gyre, as well as the AW intrusion. The present method of thermohaline-sheet identification would have more implications beyond this work. Since the thermohaline sheet remains mostly stable and coherent on a very large spatial–temporal scale, it might play a similar role as the water mass analysis in numerous applications, e.g., climate change.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Hainan Province Science and Technology Special Fund

Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory

Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences

Guangdong Basic and Applied Basic Research Foundation

LTO Research Project

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Water Properties and Diffusive Convection in the Canada Basin;Journal of Marine Science and Engineering;2024-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3