Tidally Forced Turbulent Dissipation on a Three-Dimensional Fan in Luzon Strait

Author:

Alford Matthew H.1ORCID,Nash Jonathan D.2,Buijsman Maarten3

Affiliation:

1. a Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

2. b Oregon State University, Corvallis, Oregon

3. c University of Southern Mississippi, Stennis Space Center, Mississippi

Abstract

Abstract Moored observations and a realistic, tidally forced 3D model are presented of flow and internal-tide-driven turbulence over a supercritical 3D fan in southeastern Luzon Strait. Two stacked moored profilers, an acoustic Doppler current profiler, and a thermistor string measured horizontal velocity, density, and salinity over nearly the entire water column every 1.5 h for 50 days. Observed dissipation rate computed from Thorpe scales decays away from the bottom and shows a strong spring–neap cycle; observed depth-integrated dissipation rate scales as where UBT is the barotropic velocity. Vertical velocities are strong enough to be comparable at times to the vertical profiling speed of the moored profilers, requiring careful treatment to quantify bias in dissipation rate estimates. Observations and the model are in reasonable agreement for velocity, internal wave displacement and depth-integrated dissipation rate, allowing the model to be used to understand the 3D flow. Turbulence is maximum following the transition from up-fan to down-fan flow, consistent with breaking lee waves advected past the mooring as seen previously at the Hawaiian Ridge, but asymmetric flow arises because of the 3D topography. Observed turbulence varies by a factor of 2 over the four observed spring tides as low-frequency near-bottom flow changes, but the exact means for inclusion of such low-frequency effects is not clear. Our results suggest that for the extremely energetic turbulence associated with breaking lee waves, dissipation rates may be quantitatively predicted to within a factor of 2 or so using numerical models and simple scalings. Significance Statement This paper describes deep ocean turbulence caused by strong tidal and low-frequency meandering flows over and around a three-dimensional bump, using moored observations and a computer simulation. Such information is important for accurately including these effects in climate simulations. The observations and model agree well enough to be able to use both to synthesize a coherent picture. The observed and modeled turbulence scale as the cube of the tidal speed as expected from theory, but low-frequency flows complicate the picture. We also demonstrate the underestimation of the turbulence that can result when vertical profiling rates are comparable to the internal wave velocities.

Funder

Office of Naval Research

Publisher

American Meteorological Society

Subject

Oceanography

Reference48 articles.

1. Sustained, full-water-column observations of internal waves and mixing near Mendocino Escarpment;Alford, M. H.,2010

2. Moored observations of episodic abyssal flow and mixing at station ALOHA;Alford, M. H.,2011a

3. Energy flux and dissipation in Luzon Strait: Two tales of two ridges;Alford, M. H.,2011b

4. Breaking internal lee waves at Kaena Ridge, Hawaii;Alford, M. H.,2014

5. The formation and fate of internal waves in the South China Sea;Alford, M. H.,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3