Langmuir Circulations Transfer Kinetic Energy from Submesoscales and Larger Scales to Dissipative Scales

Author:

Hypolite Delphine1ORCID,Romero Leonel2,McWilliams James C.1,Dauhajre Daniel P.1

Affiliation:

1. a Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

2. b Department of Marine Sciences, University of Connecticut, Groton, Connecticut

Abstract

Abstract Surface gravity wave effects on currents (WEC) cause the emergence of Langmuir cells (LCs) in a suite of high horizontal resolution (Δx = 30 m), realistic oceanic simulations in the open ocean of central California. During large wave events, LCs develop widely but inhomogeneously, with larger vertical velocities in a deeper mixed layer. They interact with extant submesoscale currents. A 550-m horizontal spatial filter separates the signals of LCs and of submesoscale and larger-scale currents. The LCs have a strong velocity variance with small density gradient variance, while submesoscale currents are large in both. Using coarse graining, we show that WEC induces a forward cascade of kinetic energy in the upper ocean up to at least a 5-km scale. This is due to strong positive vertical Reynolds stress (in both the Eulerian and the Stokes drift energy production terms) at all resolved scales in the WEC solutions, associated with large vertical velocities. The spatial filter elucidates the role of LCs in generating the shear production on the vertical scale of Stokes drift (10 m), while submesoscale currents affect both the horizontal and vertical energy fluxes throughout the mixed layer (50–80 m). There is a slightly weaker forward cascade associated with nonhydrostatic LCs (by 13% in average) than in the hydrostatic case, but overall the simulation differences are small. A vertical mixing scheme K-profile parameterization (KPP) partially augmented by Langmuir turbulence yields wider LCs, which can lead to lower surface velocity gradients compared to solutions using the standard KPP scheme.

Funder

National Science Foundation

Office of Naval Research Global

Publisher

American Meteorological Society

Subject

Oceanography

Reference60 articles.

1. Mapping the energy cascade in the North Atlantic Ocean: The coarse-graining approach;Aluie, H.,2018

2. A global perspective on Langmuir turbulence in the ocean surface boundary layer;Belcher, S. E.,2012

3. Mesoscale to submesoscale transition in the California current system. Part I: Flow structure, eddy flux, and observational tests;Capet, X.,2008

4. The generation of Langmuir circulations by an instability mechanism;Craik, A. D. D.,1977

5. A rational model for Langmuir circulations;Craik, A. D. D.,1976

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Surface waves and currents in aquatic vegetation;Journal of Fluid Mechanics;2023-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3