Affiliation:
1. Oceanography Department, U.S. Naval Academy, Annapolis, Maryland
2. Dirección Meteorológica de Chile, Santiago, Chile
Abstract
The leading intraseasonal mode of tropical atmospheric variability, the Madden–Julian oscillation (MJO), has been shown to modulate precipitation and circulation on a global and regional scale. Winter precipitation in Chile has been connected to a variety of synoptic-scale forcing mechanisms. This study explored the links between the two, first examining the intraseasonal variability of Chilean precipitation from surface gauges and the Tropical Rainfall Measuring Mission (TRMM) and then examining the variability of synoptic-scale circulation. Composites of precipitation, precipitation intensity, and lower-, middle-, and upper-tropospheric circulation were created using the Real-Time Multivariate MJO index, which divides the MJO into eight longitudinally based phases. Precipitation was found to vary across MJO phases, with positive precipitation anomalies in central and south-central Chile (30°–45°S) for MJO phases 8, 1, and 2, and negative anomalies in phases 3–7. Circulation was also found to vary across phase, in good agreement with precipitation: low geopotential height and negative omega (corresponding to upward vertical motion) anomalies were found over and upstream of Chile during the rainier phases, and the anomalies reversed during the drier phases. Surface pressure and middle- and upper-tropospheric geopotential height anomalies showed a classic equivalent barotropic wave train, indicating a teleconnection response to deep convective activity in the Maritime Continent in agreement with numerous earlier observational, modeling, and theoretical studies.
Publisher
American Meteorological Society
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献