Improved Sea Ice Forecasting through Spatiotemporal Bias Correction

Author:

Director Hannah M.1,Raftery Adrian E.2,Bitz Cecilia M.3

Affiliation:

1. Department of Statistics, University of Washington, Seattle, Washington

2. Department of Statistics, and Department of Sociology, University of Washington, Seattle, Washington

3. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

A new method, called contour shifting, is proposed for correcting the bias in forecasts of contours such as sea ice concentration above certain thresholds. Retrospective comparisons of observations and dynamical model forecasts are used to build a statistical spatiotemporal model of how predicted contours typically differ from observed contours. Forecasted contours from a dynamical model are then adjusted to correct for expected errors in their location. The statistical model changes over time to reflect the changing error patterns that result from reducing sea ice cover in the satellite era in both models and observations. For an evaluation period from 2001 to 2013, these bias-corrected forecasts are on average more accurate than the unadjusted dynamical model forecasts for all forecast months in the year at four different lead times. The total area, which is incorrectly categorized as containing sea ice or not, is reduced by 3.3 × 105 km2 (or 21.3%) on average. The root-mean-square error of forecasts of total sea ice area is also reduced for all lead times.

Funder

Climate Program Office

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3