Uncertainties in Hydrologic and Climate Change Impact Analyses in Headwater Basins of British Columbia

Author:

Bennett Katrina E.1,Werner Arelia T.2,Schnorbus Markus2

Affiliation:

1. Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada, and International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

2. Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada

Abstract

Abstract Three headwater basins located across British Columbia (BC) were analyzed using a hydrologic model driven by five global climate models (GCMs) and three scenarios from the Special Report on Emissions Scenarios (SRES) to project future changes in seasonal water budgets and assess the uncertainty in the projections arising from GCMs, emissions scenarios, and hydrologic model parameterizations under two future time periods. Future projected changes in temperature are for annual increases of approximately +2°C by the 2050s and +3°C by the 2080s. The 2050s and 2080s precipitation projections are for increased winter precipitation in all basins and decreases in summertime precipitation for two of the three basins—with increases projected in the northeastern BC subwatershed. The study found that the hydrologic parameter uncertainty ranged up to 55%, (average 31%) for winter runoff anomalies, which was less than the uncertainty associated with GCMs and emissions scenarios that ranged up to 135% and 78% (average 84% and 58%, respectively). The uncertainty results were variable across the three hydroclimate regimes. Coastal headwater systems in British Columbia experience more uncertainty associated with changes during winter and the summer, whereas interior systems experience the greatest uncertainties during the winter and spring. Changes projected for the 2050s at the coastal site fell outside of the range of natural variability, a robust shift that may result in a very different regime for this basin within the short planning horizon of 50 years. A small, semiarid watershed located on the Chilcotin Plateau exhibited changes to the hydrologic regime that were projected to be small in absolute terms and fell within the range of natural variability.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3