Weakened Potential Vorticity Barrier Linked to Recent Winter Arctic Sea Ice Loss and Midlatitude Cold Extremes

Author:

Luo Dehai1,Chen Xiaodan1,Overland James2,Simmonds Ian3,Wu Yutian4,Zhang Pengfei5

Affiliation:

1. Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

2. NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

3. School of Earth Sciences, The University of Melbourne, Victoria, Australia

4. Lamont–Doherty Earth Observatory, Columbia University, Palisades, New York

5. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Abstract

AbstractA winter Eurasian cooling trend and a large decline of winter sea ice concentration (SIC) in the Barents–Kara Seas (BKS) are striking features of recent climate changes. The question arises as to what extent these phenomena are related. A mechanism is presented that establishes a link between recent winter SIC decline and midlatitude cold extremes. Such potential weather linkages are mediated by whether there is a weak north–south gradient of background tropospheric potential vorticity (PV). A strong background PV gradient, which usually occurs in North Atlantic and Pacific Ocean midlatitudes, acts as a barrier that inhibits atmospheric blocking and southward cold air intrusion. Conversely, atmospheric blocking is more persistent in weakened PV gradient regions over Eurasia, Greenland, and northwestern North America because of weakened energy dispersion and intensified nonlinearity. The small climatological PV gradients over mid- to high-latitude Eurasia have become weaker in recent decades as BKS air temperatures show positive trends due to SIC loss, and this has led to more persistent high-latitude Ural-region blocking. These factors contribute to increased cold winter trend in East Asia. It is found, however, that in years when the winter PV gradient is small the East Asian cold extremes can even occur in the absence of large negative SIC anomalies. Thus, the magnitude of background PV gradient is an important controller of Arctic–midlatitude weather linkages, but it plays no role if Ural blocking is not present. Thus, the “PV barrier” concept presents a critical insight into the mechanism producing cold Eurasian extremes and is hypothesized to set up such Arctic–midlatitude linkages in other locations.

Funder

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3