Projected Changes in the Seasonal Cycle of Surface Temperature

Author:

Dwyer John G.1,Biasutti Michela2,Sobel Adam H.3

Affiliation:

1. Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York

2. Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

3. Department of Applied Physics and Applied Mathematics, Department of Earth and Environmental Sciences, and Lamont-Doherty Earth Observatory, Columbia University, New York, New York

Abstract

Abstract When forced with increasing greenhouse gases, global climate models project a delay in the phase and a reduction in the amplitude of the seasonal cycle of surface temperature, expressed as later minimum and maximum annual temperatures and greater warming in winter than in summer. Most of the global mean changes come from the high latitudes, especially over the ocean. All 24 Coupled Model Intercomparison Project phase 3 models agree on these changes and, over the twenty-first century, average a phase delay of 5 days and an amplitude decrease of 5% for the global mean ocean surface temperature. Evidence is provided that the changes are mainly driven by sea ice loss: as sea ice melts during the twenty-first century, the previously unexposed open ocean increases the effective heat capacity of the surface layer, slowing and damping the temperature response. From the tropics to the midlatitudes, changes in phase and amplitude are smaller and less spatially uniform than near the poles but are still prevalent in the models. These regions experience a small phase delay but an amplitude increase of the surface temperature cycle, a combination that is inconsistent with changes to the effective heat capacity of the system. The authors propose that changes in this region are controlled by changes in surface heat fluxes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3