Affiliation:
1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington
Abstract
Abstract
Independent research teams have constructed long-term tropical time series of the temperature of the middle troposphere (TMT) using satellite Microwave Sounding Unit (MSU) and Advanced MSU (AMSU) measurements. Despite careful efforts to homogenize the MSU/AMSU measurements, tropical TMT trends beginning in 1979 disagree by more than a factor of 3. Previous studies suggest that the discrepancy in tropical TMT trends is caused by differences in both the NOAA-9 warm target factor and diurnal drift corrections. This work introduces a new observationally based method for removing biases related to satellite diurnal drift. Over land, the derived diurnal correction is similar to a general circulation model (GCM) diurnal cycle. Over ocean, the diurnal corrections have a negligible effect on TMT trends, indicating that oceanic biases are small. It is demonstrated that this method is effective at removing biases between coorbiting satellites and biases between nodes of individual satellites. Using a homogenized TMT dataset, the ratio of tropical tropospheric temperature trends relative to surface temperature trends is in accord with the ratio from GCMs. It is shown that bias corrections for diurnal drift based on a GCM produce tropical trends very similar to those from the observationally based correction, with a trend difference smaller than 0.02 K decade−1. Differences between various TMT datasets are explored further. Large differences in tropical TMT trends between this work and that of the University of Alabama in Huntsville (UAH) are attributed to differences in the treatment of the NOAA-9 target factor and the diurnal cycle correction.
Publisher
American Meteorological Society
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献