Contributions of Different Time-Scale Variations to Tropical Cyclogenesis over the Western North Pacific

Author:

Cao Xi1,Wu Renguang2,Bi Mingyu3

Affiliation:

1. Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. Center for Monsoon System Research, and State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

3. International Laboratory on Climate and Environment Change and Key Laboratory of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing, China

Abstract

Abstract The present study investigates relative contributions of different time-scale variations of environmental factors to the tropical cyclone (TC) genesis over the western North Pacific (WNP) during July–August–September–October (JASO). Distinct from previous studies that are concerned with large-scale spatial patterns during a certain period, the present study focuses on local and instantaneous conditions of the TC genesis. Analysis shows that the contribution of convection and lower-level vorticity to the TC genesis is mainly due to intraseasonal and synoptic variations. The contribution of vertical wind shear is largely related to synoptic variations. The contribution of midlevel specific humidity is almost 2 times more from intraseasonal variations than from synoptic variations. The contribution of sea surface temperature (SST) to the TC genesis is mainly due to interannual and intraseasonal variations. The barotropic energy for synoptic-scale disturbances during the TC genesis comes mainly from climatological mean flows over the southwest quadrant and from intraseasonal wind variations over the northeast quadrant of the WNP, respectively. The contribution of interannual variations to the TC genesis is enhanced over the southeast quadrant of the WNP. More TCs form under weak easterly and westerly vertical shears, respectively, during El Niño developing and decaying JASO. The contribution of interannual variations of SST tends to be larger during El Niño decaying than during developing JASO.

Funder

National Key Research and Development Program of China grant

National Key Basic Research Program of China grant

National Natural Science Foundation of China grants

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3