Affiliation:
1. NOAA/ESRL/Chemical Sciences Division, and CIRES, University of Colorado, Boulder, Colorado
2. NOAA/ESRL/Chemical Sciences Division, Boulder, Colorado
Abstract
Abstract
Poleward migration of the latitudinal edge of the tropics of 0.25°–3.0° decade−1 has been reported in several recent studies based on satellite and radiosonde data and reanalysis output covering the past ~30 yr. The goal of this paper is to identify the extent to which this large range of trends can be explained by the use of different data sources, time periods, and edge definitions, as well as how the widening varies as a function of hemisphere and season. Toward this end, a suite of tropical edge latitude diagnostics based on tropopause height, winds, precipitation–evaporation, and outgoing longwave radiation (OLR) are analyzed using several reanalyses and satellite datasets. These diagnostics include both previously used definitions and new definitions designed for more robust detection. The wide range of widening trends is shown to be primarily due to the use of different datasets and edge definitions and only secondarily due to varying start–end dates. This study also shows that the large trends (>~1° decade−1) previously reported in tropopause and OLR diagnostics are due to the use of subjective definitions based on absolute thresholds. Statistically significant Hadley cell expansion based on the mean meridional streamfunction of 1.0°–1.5° decade−1 is found in three of four reanalyses that cover the full time period (1979–2009), whereas other diagnostics yield trends of −0.5°–0.8° decade−1 that are mostly insignificant. There are indications of hemispheric and seasonal differences in the trends, but the differences are not statistically significant.
Publisher
American Meteorological Society
Cited by
167 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献