Meteorological Regimes of the Most Intense Convective Systems along the Southern Himalayan Front

Author:

Wu Xueke1,Qie Xiushu2,Yuan Tie1,Li Jinliang1

Affiliation:

1. College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

2. Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Abstract

Abstract Based on 16 years of Tropical Rainfall Measuring Mission (TRMM) data and NCEP Climate Forecast System Reanalysis data, the most intense convective systems (ICSs) along the southern Himalayan front (SHF) are studied using the multivariate techniques of principal component analysis in T mode and k-means cluster analysis. Three clusters, classified according to the near-surface fields of wind, specific humidity, convective available potential energy, and convective inhibition, correspond to the premonsoon (March–May), the establishment of the monsoon (late May–early June), and the Indian summer monsoon itself (June–September), respectively. The location of ICSs along the SHF is closely related to the establishment of the transport passage from the eastern SHF to the northwestern SHF along the Himalayas. During the premonsoon, the southwesterly wind is weak and moist air from the Bay of Bengal is transported to the eastern SHF, where ICSs are densely distributed. The oceanic southwesterly wind is enhanced and the transport passage extends to the central SHF during the monsoon establishment period, when ICSs distribute over the whole SHF homogeneously. The southwesterly wind is the strongest and the transport passage extends to the westernmost SHF after the monsoon is established, when ICSs mainly concentrate over the concave indentation region. Backward trajectory analysis confirms that, besides the local environment, the moisture transport from the Arabian Sea (17%) and the Bay of Bengal (9%) are two important long-range transport pathways for the summer monsoon ICSs at the western end of the SHF.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3