Affiliation:
1. Scripps Institution of Oceanography, La Jolla, California
Abstract
Abstract
Realistic simulation of different modes of atmospheric variability ranging from diurnal cycle to interannual variation in global climate models (GCMs) depends crucially on the convection trigger criteria. In this study, using the data from constrained variational analysis by the Atmospheric System Research program for single-column models (SCM), the performance of the commonly used convective trigger functions in GCMs is evaluated based on the equitable threat score (ETS) value, a widely used forecast verification metric. From the ETS score, three consistently better-performing trigger functions were identified. They are based on the dilute and undilute convective available potential energy (CAPE) generation rate from large-scale forcing in the free troposphere (hereafter dCAPE) and parcel buoyancy at the lifting condensation level (Bechtold scheme). The key variables used to define these trigger functions are examined in detail. It is found that the dilute dCAPE trigger function performs the best consistently in both the tropical and midlatitude convective environment. Analysis of the composite fields of key variables of the trigger functions, based on the correct prediction, overprediction and underprediction of convection, and correct prediction of no-convection cases for convective onset, brings to light some critical factors responsible for the performance of the trigger functions. The lower-tropospheric advective forcing in dilute dCAPE trigger and vertical velocity in Bechtold trigger are identified to be the most importance ones. Suggestions are offered for further improvements.
Publisher
American Meteorological Society
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献