Extreme Precipitation Indices over China in CMIP5 Models. Part I: Model Evaluation

Author:

Jiang Zhihong1,Li Wei1,Xu Jianjun2,Li Laurent3

Affiliation:

1. Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

2. Environmental Science and Technological Center, College of Science, George Mason University, Fairfax, Virginia

3. Laboratoire de Météorologie Dynamique, CNRS, Université Pierre et Marie Curie, Paris, France

Abstract

Abstract Compared to precipitation extremes calculated from a high-resolution daily observational dataset in China during 1960–2005, simulations in 31 climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) have been quantitatively assessed using skill-score metrics. Four extreme precipitation indices, including the total precipitation (PRCPTOT), maximum consecutive dry days (CDD), precipitation intensity (SDII), and fraction of total rainfall from heavy events (R95T) are analyzed. Results show that CMIP5 models still have wet biases in western and northern China. Especially in western China, the models’ median relative error is about 120% for PRCPTOT; the 25th and 75th percentile errors are of 70% and 220%, respectively. However, there are dry biases in southeastern China, where the underestimation of PRCPTOT reach 200 mm. The performance of CMIP5 models is quite different between western and eastern China. The simulations are more reliable in the east than in the west in terms of spatial pattern and interannual variability. In the east, precipitation indices are more consistent with observations, and the spread among models is smaller. The multimodel ensemble constructed from a selection of the most skillful models shows improved behavior compared to the all-model ensemble. The wet bias in western and northern China and dry bias over southeastern China are all decreased. The median of errors for PRCPTOT has a decrease of 69% and 17% in the west and east, respectively. The good reproduction of the southwesterlies along the east coast of the Arabian Peninsula is revealed to be the main factor explaining the improvement of precipitation patterns and extreme events.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3