The Effect of Boreal Late Autumn Snow Cover over Western and Central China on the Northern Hemisphere Wintertime Blocking Frequency

Author:

Choi Yeon-Woo1,Ahn Joong-Bae1

Affiliation:

1. Division of Earth Environmental System, Pusan National University, Busan, South Korea

Abstract

The impact of snow cover in western and central China during late autumn on wintertime blocking occurrence is investigated using reanalysis data. The study results show that wintertime atmospheric circulations affected by late autumn snow cover anomalies form favorable conditions for increased blocking frequency (BF), especially in the North Pacific and North Atlantic. Evidence is also presented that the stratosphere–troposphere interactions are the key mechanism of the lag response of wintertime North Pacific and North Atlantic BFs to the late autumn snow cover. That is, positive anomalous snow cover can induce a dipole anomaly in the geopotential height field over the lower stratosphere, due to the decrease of the 300–1000-hPa thickness and the concurrent variation between the East Asian plateau jet and the polar front jet. The associated positive geopotential height anomalies are located over northwestern Eurasia. Meanwhile, western and central China shows remarkably negative geopotential height anomalies. Also, the corresponding atmospheric circulation in the lower stratosphere increases the Eliassen–Palm flux that propagates into the stratosphere through the constructive interference between the forced and climatological waves. The upward wave activity fluxes collapse the polar vortex in the stratosphere, resulting in the downward propagation of the geopotential and wind anomalies from the stratosphere. Consequently, the decreased zonal wind speed in the upper layer of the blocking region forms conditions favorable for wintertime blocking.

Funder

Rural Development Administration Cooperative Research Program for Agriculture Science and Technology Development

the Korea Meteorological Administration Research and Development Program

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3