Increasing Destructive Potential of Landfalling Tropical Cyclones over China

Author:

Liu Lu1,Wang Yuqing2,Zhan Ruifen3,Xu Jing1,Duan Yihong1

Affiliation:

1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

2. International Pacific Research Center, and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

3. Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, China

Abstract

AbstractThis study investigates the trend in destructive potential of landfalling tropical cyclones (TCs) in terms of power dissipation index (PDI) over mainland China in the period of 1980–2018. Results show that both the accumulated PDI and averaged PDI after landfall show significant increasing trends. The increasing trends are found to be contributed primarily by the increasing mean duration of TCs over land and the increasing TC intensity at landfall. Further analyses indicate that the increase in landfalling TC intensity prior to and at landfall, the decrease in intensity weakening rate after landfall, and the northward shift of landfalling TC track density all contribute to the longer duration of TCs after landfall. Moreover, the conducive large-scale conditions, such as the increases in coastal sea surface temperature and land surface temperature and soil moisture, the decrease in low-level vertical wind shear, and the increase in upper-level divergence, are all favorable for intense landfalling TCs and their survival after landfall, thus contributing to the increasing destructive potential of landfalling TCs over China.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3