Role of the Indochina Peninsula Narrow Mountains in Modulating the East Asian–Western North Pacific Summer Monsoon

Author:

Wu Chi-Hua1,Hsu Huang-Hsiung1

Affiliation:

1. Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

Abstract

Abstract Unrealistic topographic effects are generally incorporated in global climate simulations and may contribute significantly to model biases in the Asian monsoon region. By artificially implementing the Arakan Yoma and Annamese Cordillera—two south–north-oriented high mountain ranges on the coasts of the Indochina Peninsula—in a 1° global climate model, it is demonstrated that the proper representation of mesoscale topography over the Indochina Peninsula is crucial for realistically simulating the seasonality of the East Asian–western North Pacific (EAWNP) summer monsoon. Presence of the Arakan Yoma and Annamese Cordillera helps simulate the vertical coupling of atmospheric circulation over the mountain regions. In late May, the existence of the Arakan Yoma enhances the vertically deep southwesterly flow originating from the trough over the Bay of Bengal. The ascending southwesterly flow converges with the midlatitude jet stream downstream in the southeast of the Tibetan Plateau and transports moisture across the Indochina Peninsula to East Asia. The existence of the Annamese Cordillera helps the northward lower-tropospheric moisture transport over the South China Sea into the mei-yu–baiu system, and the leeside troughing effect of the mountains likely contributes to the enhancement of the subtropical high to the east. Moreover, the eastward propagation of wave energy from central Asia to the EAWNP suggests a dynamical connection between the midlatitude westerly perturbation and mei-yu–baiu. Including the Annamese Cordillera also strengthens a Pacific–Japan (PJ) pattern–like perturbation in late July by enhancing the cyclonic circulation (i.e., monsoon trough) in the lower-tropospheric western North Pacific. This suggests the contribution of the mountain effects to the intrinsic variability of the summer monsoon in the EAWNP.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3