Evaluation of CMIP3 and CMIP5 Wind Stress Climatology Using Satellite Measurements and Atmospheric Reanalysis Products

Author:

Lee Tong1,Waliser Duane E.1,Li Jui-Lin F.1,Landerer Felix W.1,Gierach Michelle M.1

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Abstract

AbstractWind stress measurements from the Quick Scatterometer (QuikSCAT) satellite and two atmospheric reanalysis products are used to evaluate the annual mean and seasonal cycle of wind stress simulated by phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). The ensemble CMIP3 and CMIP5 wind stresses are very similar to each other. Generally speaking, there is no significant improvement of CMIP5 over CMIP3. The CMIP ensemble–average zonal wind stress has eastward biases at midlatitude westerly wind regions (30°–50°N and 30°–50°S, with CMIP being too strong by as much as 55%), westward biases in subtropical–tropical easterly wind regions (15°–25°N and 15°–25°S), and westward biases at high-latitude regions (poleward of 55°S and 55°N). These biases correspond to too strong anticyclonic (cyclonic) wind stress curl over the subtropical (subpolar) ocean gyres, which would strengthen these gyres and influence oceanic meridional heat transport. In the equatorial zone, significant biases of CMIP wind exist in individual basins. In the equatorial Atlantic and Indian Oceans, CMIP ensemble zonal wind stresses are too weak and result in too small of an east–west gradient of sea level. In the equatorial Pacific Ocean, CMIP zonal wind stresses are too weak in the central and too strong in the western Pacific. These biases have important implications for the simulation of various modes of climate variability originating in the tropics. The CMIP as a whole overestimate the magnitude of seasonal variability by almost 50% when averaged over the entire global ocean. The biased wind stress climatologies in CMIP not only have implications for the simulated ocean circulation and climate variability but other air–sea fluxes as well.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3