Pentad Evolution of Wintertime Impacts of the Madden–Julian Oscillation over the Contiguous United States

Author:

Baxter Stephen1,Weaver Scott1,Gottschalck Jon1,Xue Yan1

Affiliation:

1. NOAA/Climate Prediction Center, College Park, Maryland

Abstract

Abstract Lagged pentad composites of surface air temperature and precipitation are analyzed for the winter season (December–February) to assess the influence of the Madden–Julian oscillation (MJO) on the climate of the contiguous United States. Composites are based on the Wheeler and Hendon MJO index as well as an index developed and maintained at NOAA’s Climate Prediction Center (CPC), which is based on extended empirical orthogonal function analysis of upper-level velocity potential. Significant positive temperature anomalies develop in the eastern United States 5–20 days following Wheeler and Hendon MJO index phase 3, which corresponds to enhanced convection centered over the eastern Indian Ocean. At the same lag, positive precipitation anomalies are observed from the southern Plains to the Great Lakes region. Negative temperature anomalies appear in the central and eastern United States 10–20 days following Wheeler and Hendon MJO phase 7. These impacts are supported by an analysis of the evolution of 200-hPa geopotential height and zonal wind anomalies. Composites based on the CPC velocity potential MJO index generally yield similar results; however, they capture more cases since the index contains both interannual and subseasonal variability. There are some cases where the CPC index differs from that of WH in both MJO phase identification and its North American impacts, especially near the West Coast. This analysis suggests that MJO-related velocity potential anomalies can be used without the Wheeler and Hendon MJO index to predict MJO impacts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3