Different Modes of Variability over the Tasman Sea: Implications for Regional Climate*

Author:

Liess Stefan1,Kumar Arjun2,Snyder Peter K.1,Kawale Jaya2,Steinhaeuser Karsten2,Semazzi Frederick H. M.3,Ganguly Auroop R.4,Samatova Nagiza F.5,Kumar Vipin2

Affiliation:

1. Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, Minnesota

2. Department of Computer Science and Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota

3. Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

4. Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts

5. Computer Science Department, North Carolina State University, Raleigh, North Carolina

Abstract

Abstract A new approach is used to detect atmospheric teleconnections without being bound by orthogonality (such as empirical orthogonal functions). This method employs negative correlations in a global dataset to detect potential teleconnections. One teleconnection occurs between the Tasman Sea and the Southern Ocean. It is related to El Niño–Southern Oscillation (ENSO), the Indian Ocean dipole (IOD), and the southern annular mode (SAM). This teleconnection is significantly correlated with SAM during austral summer, fall, and winter, with IOD during spring, and with ENSO in summer. It can thus be described as a hybrid between these modes. Given previously found relationships between IOD and ENSO, and IOD’s proximity to the teleconnection centers, correlations to IOD are generally stronger than to ENSO. Increasing pressure over the Tasman Sea leads to higher (lower) surface temperature over eastern Australia (the southwestern Pacific) in all seasons and is related to reduced surface temperature over Wilkes Land and Adélie Land in Antarctica during fall and winter. Precipitation responses are generally negative over New Zealand. For one standard deviation of the teleconnection index, precipitation anomalies are positive over Australia in fall, negative over southern Australia in winter and spring, and negative over eastern Australia in summer. When doubling the threshold, the size of the anomalous high-pressure center increases and annual precipitation anomalies are negative over southeastern Australia and northern New Zealand. Eliassen–Palm fluxes quantify the seasonal dependence of SAM, ENSO, and IOD influences. Analysis of the dynamical interactions between these teleconnection patterns can improve prediction of seasonal temperature and precipitation patterns in Australia and New Zealand.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3