Present Wave Climate in the Bay of Biscay: Spatiotemporal Variability and Trends from 1958 to 2001

Author:

Charles Elodie1,Idier Déborah1,Thiébot Jérôme1,Le Cozannet Gonéri1,Pedreros Rodrigo1,Ardhuin Fabrice2,Planton Serge3

Affiliation:

1. BRGM, Orléans, France

2. Ifremer, Plouzané, France

3. Centre National de Recherches Météorologiques, Toulouse, France

Abstract

Abstract Climate change impacts on wave conditions can increase the risk of offshore and coastal hazards. The present paper investigates wave climate multidecadal trends and interannual variability in the Bay of Biscay during the past decades (1958–2001). Wave fields are computed with a wave modeling system based on the WAVEWATCH III code and forced by 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) wind fields. It provides both an extended spatiotemporal domain and a refined spatial resolution over the Bay of Biscay. The validation of the wave model is based on 11 buoys, allowing for the use of computed wave fields in the analysis of mean and extreme wave height trends and variability. Wave height, period, and direction are examined for a large array of wave conditions (by seasons, high percentiles of wave heights, different periods). Several trends for recent periods are identified, notably an increase of summer significant wave height, a southerly shift of autumn extreme wave direction, and a northerly shift of spring extreme wave direction. Wave fields exhibit high interannual variability, with a normalized standard deviation of seasonal wave height greater than 15% in wintertime. The relationship with Northern Hemisphere teleconnection patterns is investigated at regional scale, especially along the coast. It highlights a strong correlation between local wave conditions and the North Atlantic Oscillation and the east Atlantic pattern indices. This relationship is further investigated at the local scale with a new method based on bivariate diagrams, allowing the identification of the type of waves (swell, storm, intermediate waves) impacted. These results are discussed in terms of comparison with previous studies and coastal risk implications.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3