Investigating Interannual Variability of Precipitation at the Global Scale: Is There a Connection with Seasonality?

Author:

Fatichi S.1,Ivanov V. Yu.2,Caporali E.3

Affiliation:

1. Department of Civil and Environmental Engineering, University of Firenze, Florence, Italy, and Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland

2. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan

3. Department of Civil and Environmental Engineering, University of Firenze, Florence, Italy

Abstract

Abstract Interannual variability of precipitation can directly or indirectly affect many hydrological, ecological, and biogeochemical processes that, in turn, influence climate. Despite the significant importance of the phenomenon, few studies have attempted to elucidate spatial patterns of this variability at the global scale. This study uses land gauge precipitation records of the Global Historical Climatology Network, version 2, as well as reanalysis data to provide an assessment of the spatial organization of characteristics of precipitation interannual variability. The coefficient of variation, skewness, and short- and long-range dependence of the precipitation variability are analyzed. Among the major inferences is that the coefficient of variation of annual precipitation shows a significant correlation with intra-annual seasonality. Specifically, subyearly precipitation anomalies occurring in locations with pronounced seasonality affect the total yearly amount, imposing a higher variability in the annual precipitation fluctuations. Furthermore, the study illustrates that a positive skewness of the distribution of annual precipitation is a robust property worldwide and its magnitude is related to the coefficient of variation. Additionally, annual precipitation exhibits very weak small-lag autocorrelation. Conversely, the intensity of long-memory–long-range dependence is significantly larger than zero, hinting that organized long-term variations are an important feature of the interannual variability of precipitation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3