Affiliation:
1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
Abstract
Global changes, such as human activities and climate change, increase the odds of worsening drought. The Gravity Recovery and Climate Experiment (GRACE) satellite provides an opportunity to monitor drought levels by the total amount of water, instead of using a small finite set of water cycle elements or indirect indicators. The potential gap lies in the insufficient size of the GRACE record. The database does not meet the requirements of a stationary annual cycle calculated over a relatively long period as recommended by the IPCC, and the disturbance from long-term global changes is often not considered. In this work, a GRACE-based modulated water deficit (GRACE-MWD) process for drought monitoring under the modulated annual cycle (MAC) reference frame in southwest China was proposed. GRACE-MWD achieved a higher ratio of agreement with the standardized precipitation evapotranspiration index at a time scale of 3 months (SPEI03): it ranged from 0.48 to 0.84, while the GRACE-based drought severity index (GRACE-DSI) ranged from 0.48 to 0.68. Compared with remote sensing datasets widely used in drought monitoring, GRACE-MWD data are less affected by seasonality from land-cover categories, which benefit from the MAC reference frame. The ratio-of-agreement metric for the study area showed that GRACE-MWD had a time scale between 7 and 11 months in reference to SPEI and the standardized precipitation index (SPI). The stability of the MAC reference frame to GRACE-MWD was further discussed when GRACE records were extended and was more stable than that of the stationary annual cycle. GRACE-MWD meets global changes via an adaptive reference frame, which is worthy of generalizing to global applications.
Funder
the National Key Research and Development Program of China
Publisher
American Meteorological Society
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献