Climate System Responses to a Common Emission Budget of Carbon Dioxide

Author:

Tian Di1,Dong Wenjie23,Yan Xiaodong1,Chou Jieming1,Yang Shili1,Wei Ting4,Zhang Han56,Guo Yan1,Wen Xiaohang7,Yang Zhiyong1

Affiliation:

1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China

2. School of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou, China

3. Zhuhai Joint Innovative Center for Climate-Environment-Ecosystem, Future Earth Research Institute, Beijing Normal University, Zhuhai, China

4. Chinese Academy of Meteorological Sciences, Beijing, China

5. * State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou, China

6. State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China

7. Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China

Abstract

Abstract Global warming as quantified by surface air temperature has been shown to be approximately linearly related to cumulative emissions of CO2. Here, a coupled state-of-the-art Earth system model with an interactive carbon cycle (BNU-ESM) was used to investigate whether this proportionality extends to the complex Earth system model and to examine the climate system responses to different emission pathways with a common emission budget of man-made CO2. These new simulations show that, relative to the lower emissions earlier and higher emissions later (LH) scenario, the amount of carbon sequestration by the land and the ocean will be larger and Earth will experience earlier warming of climate under the higher emissions earlier and lower emissions later (HL) scenario. The processes within the atmosphere, land, and cryosphere, which are highly sensitive to climate, show a relatively linear relationship to cumulative CO2 emissions and will attain similar states under both scenarios, mainly because of the negative feedback between the radiative forcing and ocean heat uptake. However, the processes with larger internal inertias depend on both the CO2 emissions scenarios and the emission budget, such as ocean warming and sea level rise.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3