A Representative Democracy to Reduce Interdependency in a Multimodel Ensemble

Author:

Sanderson Benjamin M.1,Knutti Reto2,Caldwell Peter3

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

2. Institute for Atmospheric and Climate Science, ETH, Zurich, Switzerland

3. Lawrence Livermore National Laboratory, Livermore, California

Abstract

Abstract The collection of Earth system models available in the archive of phase 5 of CMIP (CMIP5) represents, at least to some degree, a sample of uncertainty of future climate evolution. The presence of duplicated code as well as shared forcing and validation data in the multiple models in the archive raises at least three potential problems: biases in the mean and variance, the overestimation of sample size, and the potential for spurious correlations to emerge in the archive because of model replication. Analytical evidence is presented to demonstrate that the distribution of models in the CMIP5 archive is not consistent with a random sample, and a weighting scheme is proposed to reduce some aspects of model codependency in the ensemble. A method is proposed for selecting diverse and skillful subsets of models in the archive, which could be used for impact studies in cases where physically consistent joint projections of multiple variables (and their temporal and spatial characteristics) are required.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3