Impacts of Wildfire Aerosols on Global Energy Budget and Climate: The Role of Climate Feedbacks

Author:

Jiang Yiquan1,Yang Xiu-Qun1,Liu Xiaohong2,Qian Yun3,Zhang Kai3,Wang Minghuai1,Li Fang4,Wang Yong5,Lu Zheng2

Affiliation:

1. a China Meteorological Administration–Nanjing University Joint Laboratory for Climate Prediction Studies, and Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, Nanjing, China

2. b Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

3. c Pacific Northwest National Laboratory, Richland, Washington

4. d International Center for Climate and Environmental Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

5. e Department of Earth System Science, Tsinghua University, Beijing, China

Abstract

AbstractAerosols emitted from wildfires could significantly affect global climate through perturbing global radiation balance. In this study, the Community Earth System Model with prescribed daily fire aerosol emissions is used to investigate fire aerosols’ impacts on global climate with emphasis on the role of climate feedbacks. The total global fire aerosol radiative effect (RE) is estimated to be −0.78 ± 0.29 W m−2, which is mostly from shortwave RE due to aerosol–cloud interactions (REaci; −0.70 ± 0.20 W m−2). The associated global annual-mean surface air temperature (SAT) change ∆T is −0.64 ± 0.16 K with the largest reduction in the Arctic regions where the shortwave REaci is strong. Associated with the cooling, the Arctic sea ice is increased, which acts to reamplify the Arctic cooling through a positive ice-albedo feedback. The fast response (irrelevant to ∆T) tends to decrease surface latent heat flux into atmosphere in the tropics to balance strong atmospheric fire black carbon absorption, which reduces the precipitation in the tropical land regions (southern Africa and South America). The climate feedback processes (associated with ∆T) lead to a significant surface latent heat flux reduction over global ocean areas, which could explain most (~80%) of the global precipitation reduction. The precipitation significantly decreases in deep tropical regions (5°N) but increases in the Southern Hemisphere tropical ocean, which is associated with the southward shift of the intertropical convergence zone and the weakening of Southern Hemisphere Hadley cell. Such changes could partly compensate the interhemispheric temperature asymmetry induced by boreal forest fire aerosol indirect effects, through intensifying the cross-equator atmospheric heat transport.

Funder

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3