The Transient versus the Equilibrium Response of Sea Ice to Global Warming

Author:

Li Chao1,Notz Dirk2,Tietsche Steffen1,Marotzke Jochem2

Affiliation:

1. Max Planck Institute for Meteorology, and International Max Planck Research School on Earth System Modelling, Hamburg, Germany

2. Max Planck Institute for Meteorology, Hamburg, Germany

Abstract

Abstract To examine the long-term stability of Arctic and Antarctic sea ice, idealized simulations are carried out with the climate model ECHAM5/Max Planck Institute Ocean Model (MPI-OM). Atmospheric CO2 concentration is increased over 2000 years from preindustrial levels to quadrupling, is then kept constant for 5940 years, is afterward decreased over 2000 years to preindustrial levels, and is finally kept constant for 3940 years. Despite these very slow changes, the sea ice response significantly lags behind the CO2 concentration change. This lag, which is caused by the ocean's thermal inertia, implies that the sea ice equilibrium response to increasing CO2 concentration is substantially underestimated by transient simulations. The sea ice response to CO2 concentration change is not truly hysteretic and is in principle reversible. The authors find no lag in the evolution of Arctic sea ice relative to changes in annual-mean Northern Hemisphere surface temperature. The summer sea ice cover changes linearly with respect to both CO2 concentration and temperature, while the Arctic winter sea ice cover shows a rapid transition to a very low sea ice coverage. This rapid transition of winter sea ice is associated with a sharply enhanced ice–albedo feedback and a sudden onset of convective-cloud feedback in the Arctic. The Antarctic sea ice cover retreats continuously without any rapid transition during the warming. Compared to Arctic sea ice, Antarctic sea ice shows a much more strongly lagged response to changes in CO2 concentration. It even lags behind the surface temperature change, which is caused by a different response of ocean deep convection during the warming and the cooling periods.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Arctic summer sea ice loss will accelerate in coming decades;Environmental Research Letters;2024-06-17

2. Projections of an ice-free Arctic Ocean;Nature Reviews Earth & Environment;2024-03-05

3. Arctic marine heatwaves forced by greenhouse gases and triggered by abrupt sea-ice melt;Communications Earth & Environment;2024-02-13

4. Assessing the Robustness of Arctic Sea Ice Bi‐Stability in the Presence of Atmospheric Feedbacks;Journal of Geophysical Research: Atmospheres;2023-11-04

5. A frequent ice-free Arctic is likely to occur before the mid-21st century;npj Climate and Atmospheric Science;2023-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3