Influences of ENSO Teleconnection on the Persistence of Sea Surface Temperature in the Tropical Indian Ocean

Author:

Ding Ruiqiang1,Li Jianping1

Affiliation:

1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

Abstract This study confirms a weak spring persistence barrier (SPB) of sea surface temperature anomalies (SSTAs) in the western tropical Indian Ocean (WIO), a strong fall persistence barrier (FPB) in the South China Sea (SCS), and the strongest winter persistence barrier (WPB) in the southeastern tropical Indian Ocean (SEIO). During El Niño events, a less abrupt sign reversal of SSTAs occurs in the WIO during spring, an abrupt reversal occurs in the SCS during fall, and the most abrupt reversal occurs in the SEIO during winter. The sign reversal of SSTA implies a rapid decrease in SSTA persistence, which is favorable for the occurrence of a persistence barrier. The present results indicate that a more abrupt reversal of SSTA sign generally corresponds to a more prominent persistence barrier. El Niño–induced changes in atmospheric circulation result in reduced evaporation and suppressed convection. This in turn leads to the warming over much of the TIO basin, which is an important mechanism for the abrupt switch in SSTA, from negative to positive, in the northern SCS and SEIO. The seasonal cycle of the prevailing surface winds has a strong influence on the timing of the persistence barriers in the TIO. The Indian Ocean dipole (IOD) alone can cause a weak WPB in the SEIO. El Niño events co-occurring with positive IOD further strengthen the SEIO WPB. The SEIO WPB appears to be more strongly influenced by ENSO than by the IOD. In contrast, the WIO SPB and the SCS FPB are relatively independent of the IOD.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3